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Abstract: - The paper presents the report of an investigation carried out to model and optimize the compressive 

strength of Lateritic Concrete. The laterite is the reddish soil layer often belying the top soil in many locations 

and further deeper in some areas, collected from the Vocational Education Building Site of the University of 

Nigeria, Nsukka. The work applied the Scheffe’s optimization approach to obtain a mathematical model of the 

form f(xi1,xi2,xi3), where xi are proportions of the concrete components, viz: cement, laterite and water. Scheffe’s 

experimental design techniques are followed to mould various block samples measuring 220mm x 210mm x 

120mm, with varying generated components ratios which were tested for 28 days strength. To carry out the task, 

we embark on experimentation and design, applying the second order polynomial characterization process of the 

simplex lattice method.  The model adequacy is checked using the control factors. Finally a software is prepared 

to handle the design computation process to select the optimized properties of the mix, and generate the optimal 

mix ratios for the desired property. 
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I. INTRODUCTION 
The construction of structures is a regular operation which creates the opportunity for continued change 

and improvement on the face of the environment.  From the beginning of time, the cost of this change has been 

of major concern to man as the major construction factors are finance, labour, materials and equipment. 

Major achievements in the area of environmental development is heavily dependent on the availability of 

construction materials which take a high proportion of the cost of the structure.  This means that the locality of 

the material and the usability of the available materials directly impact on the achievable development of the 

area as well as the attainable level of technology in the area. 

In the present time, concrete is the main material of construction, and the ease or cost of its production 

accounts for the level of success in the of area environmental upgrading through the construction of new roads, 

buildings, dams, water structures and the renovation of such structures.  To produce the concrete several primary 

components such as cement, sand, gravel and some admixtures are to be present in varying quantities and 

qualities.  Unfortunately, the occurrence and availability of these components vary very randomly with location 

and hence the attendant problems of either excessive or scarce quantities of the different materials occurring in 

different areas. Where the scarcity of one component prevails exceedingly, the cost of the concrete production 

increases geometrically. Such problems obviate the need to seek alternative materials for partial or full 

replacement of the component when it is possible to do so without losing the quality of the concrete.   

 

1.1 Optimization Concept  

Every activity that must be successful in human endeavour requires planning. The target of planning is 

the maximization of the desired outcome of the venture. In order to maximize gains or outputs it is often 

necessary to keep inputs or investments at a minimum at the production level. The process involved in this 

planning activity of minimization and maximization is referred to as optimization, (Orie O.U. and Osadebe 

N.N., 2009). In the science of optimization, the desired property or quantity to be optimized is referred to as the 

objective function. The raw materials or quantities whose amount of combinations will produce this objective 

function are referred to as variables.    

The variations of these variables produce different combinations and have different outputs. Often the 

space of variability of the variables is not universal as some conditions limit them. These conditions are called 

constraints. For example, money is a factor of production and is known to be limited in supply. The constraint at 

any time is the amount of money available to the entrepreneur at the time of investment.  

Hence or otherwise, an optimization process is one that seeks for the maximum or minimum value and at the 

same time satisfying a number of other imposed requirements (Majid, K.I., 1974). The function is called the 

objective function and the specified requirements are known as the constraints of the problem. 

Everybody can make concrete but not everybody can make structural concrete. Structural concrete are made 

with specified materials for specified strength. Concrete is heterogeneous as it comprises sub-materials. 
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Concrete is made up of fine aggregates, coarse aggregates, cement, water, and sometimes admixtures. David and 

Galliford (2000), report that modern research in concrete seeks to provide greater understanding of its 

constituent materials and possibilities of improving its qualities. For instance, Portland cement has been partially 

replaced with ground granulated blast furnace slag (GGBS), a by–product of the steel industry that has valuable 

cementations properties (Ecocem Ireland Ltd, 1993). 

 

1.2 Concrete Mix optimization  

              The task of concrete mix optimization implies selecting the most suitable concrete aggregates from the 

data base (Genadij and Juris, 1998).  Several methods have been applied. Examples are by Mohan (2002), 

Simon (2003), Lech (1999), Czarneki (1994). Nordstrom and Munoz (1994) proposed an approach which adopts 

the equilibrium mineral assemblage concept of geochemical thermodynamics as a basis for establishing mix 

proportions. Bloom and Bentur (1995) reports that optimization of mix designs require detailed knowledge of 

concrete properties. Low water-cement ratios lead to increased strength but will negatively lead to an 

accelerated and higher shrinkage. Apart from the larger deformations, the acceleration of dehydration and 

strength gain will cause cracking at early ages.  

 

1.3Modeling  

               Modeling means setting up mathematical models/formulations of physical or other systems. Many 

factors of different effects occur in nature in the world simultaneously dependently or independently. When they 

interplay they could inter-affect one another differently at equal, direct, combined or partially combined rates 

variationally, to generate varied natural constants in the form of coefficients and/or exponents. The challenging 

problem is to understand and asses these distinctive constants by which the interplaying factors underscore some 

unique natural phenomenon towards which their natures tend, in a single, double or multi phase system. 

For such assessment a model could be constructed for a proper observation of response from the interaction of 

the factors through controlled experimentation followed by schematic design where such simplex lattice 

approach of the type of Henry Scheffe (1958) optimization theory could be employed. Also entirely different 

physical systems may correspond to the same mathematical model so that they can be solved by the same 

methods. This is an impressive demonstration of the unifying power of mathematics (Erwin Kreyszig, 2004). 

 

II. LITERATURE REVIEW 
• To be a good structural material, the material should be homogeneous and isotropic. The Portland cement, 

laterite or concrete are none of these, nevertheless they are popular construction materials (Wilby, 1963).  

• … laterized concrete can be used in constructing cylindrical storage structures (Ukamaka N.T., 2007). 

• With given proportions of aggregates the compressive strength of concrete depends primarily upon age, 

cement content, and the cement-water ratio (Reynolds, C. and Steedman, J.C, 1981).    

• Tropical weathering (laterization) is a prolonged process of chemical weathering which produces a wide 

variety in the thickness, grade, chemistry and ore mineralogy of the resulting soils (Tardy, Yves - 1997).  

• The mineralogical and chemical compositions of laterites are dependent on their parent rocks (Tardy Yves, 

1997). 

• Laterite formation is favoured in low topographical reliefs of gentle crests and plateaus which prevent the 

erosion of the surface cover (Dalvi, Ashok D.; Bacon, W. Gordon; Osborne, Robert C. (March 7–10, 2004)). 

• Laterites reflect past weathering conditions (Helgren, David M.; Butzer, Karl W. Butzer,  October 1977).  

• Present-day laterite occurring outside the humid tropics are considered to be indicators of climatic change, 

continental drift. The mineralogical and chemical compositions of laterites are dependent on their parent rocks 

(Tardy Yves, 1997), a combination of both (Bourman, R.P. August 1993). 

• Of all the desirable properties of hardened concrete such as the tensile, compressive, flexural, bond, shear 

strengths, etc., the compressive strength is the most convenient to measure and is used as the criterion for the 

overall quality of the hardened concrete (Majid, K.I., 1974). 

• Every activity that must be successful in human endeavour requires planning whose target is the maximization 

of the desired outcome of the venture. (Orie O.U. and Osadebe N.N., 2009). 

• Optimization process is one that seeks for the maximum or minimum value and at the same time satisfying a 

number of other imposed requirements (Majid, K.I., 1974).  

• Modern research in concrete seeks to provide greater understanding of its constituent materials and 

possibilities of improving its qualities (David and Galliford, 2000). 

• The task of concrete mix optimization implies selecting the most suitable concrete aggregates from the data 

base (Genadij and Juris, 1998). 

• Optimization of mix designs require detailed knowledge of concrete properties (Bloom and Bentur, 1995). 

• The task of concrete mix optimization implies selecting the most suitable concrete aggregates from a data 

base (Genadji and Juris, 1998).  

http://en.wikipedia.org/wiki/Terrain
http://en.wikipedia.org/wiki/Plateau
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• Mathematical models have been used to optimize some mechanical properties of concrete made from Rice 

Husk Ash (RHA), - a pozolanic waste (Scheffe 1958, Obam and Osadebe’s, 2007) . 

• The inclusion of mound soil in mortar matrix resulted in a compressive strength value of up to 40.08N/mm2, 

and the addition of 5% of mound soil to a concrete mix of 1:2:4:0.56 (cement: sand: coarse aggregate: water) 

resulted in an increase of up to 20.35% in compressive strength, (Felix et al, Alu and Sulaiman, 2000).  

• Simplex is a structural representation (shape) of lines or planes joining assumed positions or points of the 

constituent materials (atoms) of a mixture, and they are equidistant from each other (Jackson N., 1983). 

• When studying the properties of a q-component mixture, which are dependent on the component ratio only the 

factor space is a regular (q-1)–simplex (S. Akhnazarov and V. Kafarov , 1982). 

• Simplex lattice designs are saturated, that is, the proportions used for each factor have m + 1 equally spaced 

levels from 0 to 1 (xi = 0, 1/m, 2/m, … 1), and all possible combinations are derived from such values of the 

component concentrations, that is, all possible mixtures, with these proportions are used (S. Akhnazarov and 

V. Kafarov, 1982).  

 

III. BACKGROUND (SCHEFFE’S OPTIMIZATION) THEORY 
This is a theory where a polynomial expression of any degrees, is used to characterize  a simplex lattice 

mixture components. In the theory only a single phase mixture is covered. The theory lends path to a unifying 

equation model capable of taking varying componental ratios to fix approximately equal mixture properties. The 

optimization is the selectability, from some criterial (mainly economic) view point, the optimal ratio from the 

component ratios list that can be automatedly generated. His theory is one of the adaptations to this work in the 

formulation of response function for compressive strength of lateritic concrete.    

 

3.1 Simplex Lattice  

 Simplex is a structural representation (shape) of lines or planes joining assumed positions or points of the 

constituent materials (atoms) of a mixture (Jackson N., 1983), and they are equidistant from each other. 

Mathematically, a simplex lattice is a space of constituent variables of X1, X2, X3,……, and Xi which obey these 

laws: 

 

Xi< 0 

X ≠ negative                    …………………………………………………………………….3.1  

0 ≤ xi ≤ 1 

∑xi = 1 

i=1 

 

That is, a lattice is an abstract space.  

To achieve the desired strength of concrete, one of the essential factors lies on the adequate proportioning of 

ingredients needed to make the concrete. Henry Scheffe, (1958), developed a model whereby if the compressive 

strength desired is specified, possible combinations of needed ingredients to achieve the compressive strength  

can easily be predicted by the aid of computer, and if proportions are specified the compressive strength can 

easily be predicted.  

 

3.2 Simplex Lattice Method  

In designing experiment to attack mixture problems involving component property diagrams the 

property studied is assumed to be a continuous function of certain arguments and with a sufficient accuracy it 

can be approximated with a polynomial (Akhnazarova and Kafarov, 1982, pp 242). When investigating multi-

components systems the use of experimental design methodologies substantially reduces the volume of an 

experimental effort. Further, this obviates the need for a special representation of complex surface, as the 

wanted properties can be derived from equations while the possibility to graphically interpret the result is 

retained.  

As a rule the response surfaces in multi-component systems are very intricate. To describe such surfaces 

adequately, high degree polynomials are required, and hence a great many experimental trials. A polynomial of 

degree n in q variable has C
n

q+n coefficients. If a mixture has a total of q components and x1 be the proportion of 

the i
th

 component in the mixture such that,  

 

xi>= 0 (i=1,2, ….q),  . . . . . . . . (3.2) 

 

then the sum of the component proportion is a whole unity i.e. 
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X1 + x2 + x3 = 1 or ∑xi – 1 = 0  …. ..               ..                      ..                  (3.3) 

 

where i = 1, 2, …., q… Thus the factor space is a regular (q-1) dimensional simplex. In (q-1) dimensional 

simplex if q = 2, we have 2 points of connectivity. This gives a straight line simplex lattice. If q=3, we have a 

triangular simplex lattice and for q = 4, it is a tetrahedron simplex lattice, etc. Taking a whole factor space in the 

design we have a (q,m) simplex lattice whose properties are defined as follows: 

 i. The factor space has uniformly distributed points, 

 ii.  Simplex lattice designs are saturated (Akhnarova and Kafarov, 1982). That is,    

the proportions used for each factor have m + 1 equally spaced levels from 0     

to 1 (xi = 0, 1/m, 2/m, … 1), and all possible combinations are derived from  

such values of the component concentrations, that is, all possible mixtures,  

with these proportions are used. 

 

Hence, for the quadratic lattice (q,2), approximating the response surface with the second degree polynomials  

(m=2), the following levels of every  factor must be used 0, ½ and 1; for the cubic (m=3) polynomials, the levels 

are 0, 1/3, 2/3 and 1, etc; Scheffe, (1958), showed that the number of points in a (q,m) lattice is given by  

 

 Cq+m-1 = q(q+1) … (q+m-1)/m! …………….. .. .. .. .. (3.4) 

 

3.2.1The (3,2) Lattice Model  

The properties studied in the assumed polynomial are real-valued functions on the simplex and are termed 

responses. The mixture properties were described using polynomials assuming a polynomial function of degree 

m in the q-variable x1, x2 ……, xq, subject to equation 2.3, and will be called a (q,m) polynomial having a 

general form: 

 

Ŷ= b0 +∑biXi + ∑bijXiXij + … + ∑bijk + ∑bi1i2…inXi1Xi2…Xin …… .. .. (3.5) 
i≤1≤q         i≤1<j≤q                         i≤1<j<k≤q 

     where b is a constant coefficient. 

The relationship ∑xi = 1 enables the q
th

 component to be eliminated and the  

number of coefficients reduced to C
m

q+m-1, but the very character of the problem dictates that all the q 

components be introduced into the model.  

 

Substituting into equation Eq (3.5), the polynomial has the general usable form: 

 

Ŷ = b0 +b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X13 + b23X2X3 + 

 b11X
2
1 + b22X

2
2 + b33X

2
3      ……  …..  …    (3.6)  

 

H. Scheffe (1958), suggested to describe the mixture properties by reduced polynomials obtainable from Eqn 

(3.6) subject to the normalization condition of Eqn. (3.3) for a sum of independent variables. For a ternary 

mixture, the reduced second degree polynomial can be obtained as follows: 

From Eqn. (3.3)  

 X1+X2 +X3 =1    ………………………………….(3.7) 

i.e  

 b0 X2 + b0X2 + b0 x3 = b0 …………………………….. (3.8) 

 

Multiplying Eqn. (3.8) by X1, X2, x3, in succession gives 

            X1
2
 = X1 - X1X2 - X1X3 

            X2
2
 = X2 - X1X2 - X2X3                ……………………….. (3.9) 

            X3
2
 = X3 - X1X3 - X2X3 

 

substituting Eqn. (3.8) into Eqn. (3.9), we obtain after necessary  transformation  that    

 Ŷ =   (b0 + b1 + b11 )X1   +   (b0 + b2 + b22 )X2 + (b0 +  b3 + b33)X3 +   

           (b12 - b11 - b22)X1X2 + (b13 - b11 - b33)X1X3 + (b23 - b22 - b33)X2X3 . …  .. ... ( 3.10)  

 

 If we denote 

                    βi   = b0 + bi + bii 

     and         βij  = bij  - bii - bjj, 
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q X=1

q 

 then we arrive at the reduced second degree polynomial in 6 variables:  

                   Ŷ = β1X1+ β2X2 + β3X3 + β12X1X2+ β13X1X3 + β23X2X23    . .      ( 3.11 )  

Thus, the number of coefficients has reduced from 10 in Eqn 3.6 to 6 in Eqn 3.11. That is, the reduced second 

degree polynomial in q variables is  

 

Ŷ = ∑ βiXi +∑βijXi .. .. .. .. .. ..   ( 3.12 )  

 

3.2.2 Construction of Experimental/Design Matrix  

From the coordinates of points in the simplex lattice, we can obtain the design matrix. We recall that 

the principal coordinates of the lattice, only a component is 1 (refer to fig 3.1), others are zero. 

Hence if we substitute in Eqn. (3.11), the coordinates of the first point (X1=1, X2=0, and X3=0,  Table 3.1), we 

get that Y1= β1.  

And doing so in succession for the other two points if the hexahedron, we obtain  

 Y2= β2,Y3= β3  .. . . . . . . (3.13) 

The substitution of the coordinates of the fourth point yields 

 Y12 = ½ X1 + ½X2 + ½X1.X2 

       =  ½ β1 + ½ β 2 + 
1
/4 β12 

But as βi = Yi then 

 Y12 = ½ β1 - ½ β 2 - 
1
/4 β12 

Thus 

 β12   = 4 Y12 - 2Y1 - 2Y2   . . . . . (3.14)  

And similarly, 

 β13   = 4 Y13 - 2Y1 - 2Y2 

 β23   = 4 Y23 - 2Y2 - 2Y3 

Or generalizing, 

 βi   =  Yiand βij  = 4 Yij - 2Yi - 2Yj . . . . . . .(3.15)  

which are the coefficients of the reduced second degree polynomial for a q-component mixture, since 

the three points defining the coefficients βij lie on the edge. The subscripts of the mixture property symbols 

indicate the relative content of each component X1 alone and the property of the mixture is denoted by Y1. 

Mixture 4 includes X1 and X2, and the property being designated Y12. 

 

3.2.3 Actual and Pseudo Components 

The requirements of the simplex that 

 

       ∑ Xi = 1  

 

Makes it impossible to use the normal mix ratios such as 1:3, 1:5, etc, at a given water/cement ratio. 

Hence a transformation of the actual components (ingredient proportions) to meet the above criterionis 

unavoidable. Such transformed ratios say X1
(i)

, X2
(i)

,  and X3
(i) 

for  the i
th 

experimental points are called pseudo 

components. Since X1, X2 and X3 are subject to ∑ Xi = 1, the transformation of cement:laterite:water at say 0.60 

water/cement ratio cannot easily be computed because X1, X2 and X3 are in pseudo expressions X1
(i)

, X2
(i)

,  and 

X3
(i) 

.For  the i
th 

experimental point, the transformation computations are to be done. 

 

The arbitrary vertices chosen on the triangle are A1(1:7.50:0.05), A2(1:8.20:0.03) and A3(1:6.90:0.10), based on 

experience and earlier research reports. 

  

3.2.4 Transformation Matrix 

If Z denotes the actual matrix of the i
th

 experimental points, observing from Table 3.2 (points 1 to 3), 

BZ = X =1 . . . . . . . . . .(3.16) 

  where B is the transformed matrix. 

Therefore,     B = I.Z
-1 

Or  B=Z
-1

 . . . . . . . . (3.17) 

For instance, for the chosen ratios A1, A2 andA3 (fig. 3.6), 

 

 

          1.00  7.50   0.50 

Z =     1.00  8.20   0.30     . . .  . . . (3.18) 

           1.00  6.90   0.10   
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From Eqn 3.17, 

 

 

B =Z
-1   

 

             26.65  -17.60   -8.04 

Z
-1

 =     -30.04    2.17     0.87 

             -56.52  26.08   30.43   

 

 

 

Hence, 

                 1       0        0 

                    B Z
-1

 =   Z. Z
-1

  =   0       1        0 

                 0       0       1  

 

Thus, for actual component Z, the pseudo component X is given by  

 

    X1
(i)

              26.65  -17.60   -8.04        Z1
(i)

 

X  X2
(i)

   =  B   -30.04    2.17     0.87    Z  Z2
(i)

 

     X3
(i)

            -56.52   26.08   30.43       Z3
(i)

 

 

which gives the Xi(i=1,2,3) values in Table 3.2. 

 

The inverse transformation from pseudo component to actual component is expressed as  

 AX  = Z . . . . . . . . . (3.19)  

   where A  = inverse matrix 

    A  =  Z X
-1

. 

From Eqn 3.16, X = BZ, therefore, 

 A = Z. (BZ)
-1 

 
A = Z.Z

-1
B

-1 

 
A =  IB

-1 

 
B = B

-1 
. . . . . . . . . (3.20) 

This implies that for any pseudo component X, the actual component is given by  

 

    Z1
(i)

              1   7.50   0.05        X1
(i)

 

Z  Z2
(i)

   =  B    1   8.20   0.03    X  X2
(i) 

.  . . . .

 (3.21) 

     Z3
(i)                     

1   6.90  0.10        X3
(i)

 

 

Eqn 3.21 is used to determine the actual components from points 4 to 6 , and the control values from points 7 to 

9 (Table 3.2). 
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1≤i<j≤q 1≤i≤q 

1≤i≤q 1≤i<j≤q 

 

 

3.2.5 Use of Values in Experiment 

During the laboratory experiment, the actual components were used to measure out the appropriate 

proportions of the ingredients: cement, laterite and water, for mixing the lateritic concrete materials for casting 

the samples. The values obtained are presented in Tables in section 5. 

 

3.3 Adequacy of Tests 

  This is carried out by testing the fit of a second degree polynomial (Akhnarova and Kafarov 1982). 

After the coefficients of the regression equation has been derived, the statistical analysis is considered 

necessary, that is, the equation should be tested for goodness of fit, and the equation and surface values bound 

into the confidence intervals. In experimentation following simplex-lattice designs there are no degrees of 

freedom to test the equation for adequacy, so, the experiments are run at additional so-called test points. 

The number of control points and their coordinates are conditioned by the problem formulation and experiment 

nature. Besides, the control points are sought so as to improve the model in case of inadequacy. The accuracy of 

response prediction is dissimilar at different points of the simplex. The variance of the predicted response, SY
2
, 

is obtained from the error accumulation law. To illustrate this by the second degree polynomial for a ternary 

mixture, the following points are assumed: 

Xi can be observed without errors (Akhanarova and Kafarov, 1982). 

The replication variance, SY
2
, is similar at all design points, and  

Response values are the average of ni and nij replicate observations at appropriate points of the simplex 

Then the variance SŶi and  SŶij will SŶij  will be 

 (SŶ
2
)i=SY

2
/ni . . . . . . . . (3.22)  

 (SŶ
2
)ij=SY

2
/nij. . . . . . . . . (3.23)  

In the reduced polynomial, 

Ŷ = β1X1 + β2X2 + β3X3 + β12X12 + β13X13 + β23X23 . . . . .(3.24) 

If we replace coefficients by their expressions in terms of responses, 

 

βi = Yi and βij = 4Yij – 2Yi – 2Yj 

Ŷ  = Y1X1 + Ŷ2X2 + Y3X3 + (4Y12 – 2Y1 – 2Y2 )X1X2  + (4Y13 – 2Y1 – 2Y3)X1X3  + (4Y23 – 2Y2 -     

       2Y3 )X2X3   

 

    = Y1(X1 – 2X1X2 – 2X1X3)+ Y2(X2  - 2X1X2 - 2X2X3)+ Y3(X3 - 2X1X3  + 2X2X3) +  

        4Y12X1X2 + 4Y13X1X3 + 4Y23X2X3     . . . . . . .(3.25) 

Using the condition X1+X2 +X3 =1, we transform the coefficients at Yi 

 X1 – 2X1X2 – 2X1X3 =X1 – 2X1(X2 + X3) 

          = X1 – 2X1(1 - X1) = X1(2X1 – 1) and so on. . (3.26)  

Thus  

Ŷ = X1(2X1 – 1)Y1 + X2(2X2 – 1)Y2 + X3(2X3 – 1)Y3 + 4Y12X1X2 + 4Y13X1X3 +     

      4Y23X2X3   . . . . . . . . . (3.27) 

Introducing the designation 

 ai = Xi(2X1 – 1) and aij = 4XiXj  . . . . .                (3.27a) 

and using Eqns (3.22) and (3.230) give the expression for the variance SY
2
. 

 SŶ
2 =

 SY
2
 (∑aii/ni  + ∑ajj/nij) . . . . ..  (3.28) 

  

If the number of replicate observations at all the points of the design are equal, i.e. ni=nij= n, then all the 

relations for SŶ
2
 will take the form 

SŶ
2 =

 SY
2
ξ/n . . . . . . . . . .(3.29) 

where, for the second degree polynomial,  

 

      ξ  =  ∑ai
2
 +   ∑aij

2
  

     .  . (3.30)  

  

As in Eqn (3.30), ξ is only dependent on the mixture composition. Given the replication Variance and the 

number of parallel observations n, the error for the predicted values of the response is readily calculated at any 

point of the composition-property diagram using an appropriate value of ξ taken from the curve. 

Adequacy is tested at each control point, for which purpose the statistic is built: 

t = ∆Y/(SŶ
2 
+ SY

2
) = ∆Yn

1/2
 /(SY(1 + ξ)

1/2
 . . . . . .(3.31) 

where ∆Y = Yexp – Ytheory  .  . . . . . . .(3.32) 
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i 

 

and  n = number of parallel observations at every point. 

The t-statistic has the student distribution, and it is compared with the tabulated value of tα/L(V) at a level of 

significance α, where L = the number of control points, and V = the number for the degrees of freedom for the 

replication variance. 

The null hypothesis is that the equation is adequate is accepted if tcal< tTable for all the control points. 

The confidence interval for the response value is  

 Ŷ - ∆ ≤  Y ≤ Ŷ + ∆ . . . . . . . .

 (3.33) 

∆ = tα/L,k SŶ . . . . . . . . . (3.34) 

   where k is the number of polynomial coefficients determined. 

Using Eqn (3.29) in Eqn (3.34)    

∆ = tα/L,k SY(ξ/n)
1/2

 . . . . . . . . (3.35) 

. .  

 

IV. METHODOLOGY 
4.1 Introduction 

To be a good structural material, the material should be homogeneous and isotropic. The Portland 

cement, laterite or concrete are none of these, nevertheless they are popular construction materials (Wilby, 

1963).The necessary materials required in the manufacture of the lateritic concrete in the study are cement, 

laterite and water. 

 

4.1 Materials  

The disturbed samples of laterite material were collected at the Vocational Education project site at the 

University of Nigeria, Nsukka, at the depth of 1.5m below the surface. 

The water for use is pure drinking water which is free from any contamination i.e. nil Chloride content, pH =6.9, 

and Dissolved Solids < 2000ppm. Ordinary Portland cement is the hydraulic binder used in this project and 

sourced from the Dangote Cement Factory, and assumed to comply with the Standard Institute of Nigeria (NIS) 

1974, and kept in an air-tight bag. 

 

4.1.1 Material Properties  

All samples of the laterite material conformed to the engineering properties already determined by a team of 

engineering consultants from the Civil Engineering  Department, U.N.N, who reported on the Sieve Analysis 

Tests, Natural Moisture Content, etc, carried out according to the British Standard Specification, BS 1377 – 

“Methods of Testing Soils for Civil Engineering Purposes”.  

 

4.2 Preparation of Samples 

The sourced materials for the experiment were transferred to the laboratory where they were allowed to dry. A 

samples of the laterite were prepared and tested to obtain the moisture content for use in proportioning the 

components of the lateritic concrete to be prepared. The laterite was sieved to remove debris and coarse 

particles. The component materials were mixed at ambient temperature. The materials were mixed by weight 

according to the specified proportions of the actual components generated in Table 3.2. In all, two blocks of 

220mm x210 x120mm for each of six experimental points and three control points were cast for the compressive 

strength test, cured for 28 days after setting and hardening. 

 

4.3  Strength Test   

After 28 day of curing, the cubes  and blocks were crushed, with dimensions measured before and at the point of 

shearing, to determine the lateritic concrete block strength, using the compressive testing machine to the 

requirements of BS 1881:Part 115 of 1986.   

 

V. RESULT AND ANALYSIS 
5.1 Determination of Replication Error And Variance of Response  

To raise the experimental design equation models by the lattice theory approach, two replicate 

experimental observations were conducted for each of the six design points. 

Hence we have below, the table of the results (Tables 5.1a,b and c) which contain the results of two repetitions 

each of the 6 design points plus three Control Points of the (3,2) simplex lattice, and show the mean and 

variance values per test of the observed response, using the following mean and variance equations below: 

 

 Ÿ =∑(Yr)/r .  . . . . . .    5.1 
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i 

 

   n 

     where Ŷ is the mean of the response values and  

r =1,2. 

  

SY
2
  = ∑[(Yi  -  Ÿi)

2
]/(n-1) . . . .    . .    5.2  

where n = 9. 

      

Table 5.1a Result of the Replication Variance of the Compressive Strength Response for 150x150x150 mm 

Cube 

Experiment 

No (n) 

Repeti

tion 

Response 

Ec (N/mm
2)

 

Response 

Symbol 
∑Yr 

 

Ÿr 
∑(Yr - Ÿr)

2
 

 

    Si
2
 

1 1A 

1B 

3.25 

2.15 

Y1 

 
5.40 2.70 0.605 1380.73 

2 2A 

2B 

3.11 

1.94 
Y2 5.05 2.325 0.764 8644.76 

3 3A 

3B 

2.98 

1.61 
Y3 4.59 2.295 0.938 1381.48 

4 4A 

4B 

3.42 

2.36 
Y12 5.78 2.89 2.621 6351.91 

5 5A 

5B 

3.89 

1.76 
Y13 5.62 2.81 2.205 652.35 

6 6A 

6B 

2.44 

2.44 Y23 4.50 2.25 0.072 92452.54 

 

Control Points 

7 7A 

7B 

2.22 

1.51 
C1 3.73 1.865 0.252 3339.91 

8 8A 

8B 

3.01 

2.09 
C2 5.10 2.55 0.423 14844.09 

9 9A 

9B 

1.96 

2.23 
C3 4.19 2.095 0.036 24296.18 

       ∑3.959    

 

 Replication Variance 

  

SYc
2 
= (∑Si

2
)/(n-1) =  3.959/8  =  0.494 

 

  

Replication Error 

 

 SYc  =   (SŶ
2
)

1/2   
=  19293

1/2 
=0.703 

 

5.1.2.4  Determination of Regression Equation for the Compressive Strength. From Eqns 3.15 and Table 5.1 the 

coefficients of the reduced second degree polynomial is determined as follows: 

  β1=2.700  

  β2= 2.525 

  β3=2.295  

  β12=4(2.89)-2(2.27)-2(5.525) =1.11 

  β13=4(2.81)-2(2.7)-2(5.595) =1.25  

  β23=4(2.25)-2(2.525)-2(2.295) = 0.64 

Thus, from Eqn (3.11),  

Ŷc = 2.70X1+ 2.525X2 + 2.295X3   + 1.11X1X2 + 1.25X1X3 – 0.64X2X3 .     

   . . . . . (5.3a) 

Eqn 5.3c is the mathematical model of the G of the lateritic concrete based on the 28-day strength. 

 

5.1.2.5 Test of Adequacy of the Compressive strength Model 

Eqn 5.4, the equation model, will be tested for adequacy against the controlled experimental results. 

 

We recall our statistical hypothesis as follows: 
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1. Null Hypothesis (H0): There is no significant difference between the experimental values and the theoretical 

expected results of the compressive strength. 

2.Alternative Hypothesis (H1): There is a significant difference between the experimental values and the 

theoretical expected results of the compressive strength. 

 

5.1.2.6  t-Test for the Compressive strength  Model  

If we substitute for Xi in Eqn 5.4 from Table 3.3, the theoretical predictions of the response (Ŷ) can be obtained. 

These values can be compared with the experimental results (Table 5.1). For the t-test (Table 5.2), a, ξ, t and ∆y 

are evaluated using Eqns 3.25a, 3.28, 3.29 and 3.30 respectively. 

 

 
 

Significance level α = 0.05, 

i.e.          tα/L(Vc) =t0.05/3(9), where L=number of control  point. 

 

From Appendix A, the tabulated value of t0.05/6(9) is found to be 2.966 which is greater than any of the 

calculated t-values in Table 5.2. Hence we can accept the Null Hypothesis. 

From Eqn 3.35, with k=6 and tα/k(V) =t0.05/6(9) = 2.966, 

∆   =   1.266  which satisfies the confidence interval equation of 

Eqn 3.31 when viewed against the response values in Table 5.2. 

 

5.2  Computer Program  

The computer program is developed for the model). In the program any desired  Modulus can be specified as an 

input and the computer processes and prints out possible combinations of mixes that match the property, to the 

following tolerance: 

Compressive Strength  -    0.001 N/mm
2
, 

Interestingly, should there be no matching combination, the computer informs the user of this. It also checks the 

maximum value obtainable with the model.    

 

 5.2.1 Choosing a Combination  

It can be observed that the strength of 2.896896 N/sq mm yielded 4 combinations. To accept any particular 

proportions depends on the factors such as workability, cost and honeycombing of the resultant lateritic 

concrete. 

 

6.1  Conclusion  

Henry Scheffe’s simplex design was applied successfully to prove that the modulus of  of lateritic concrete is a 

function of the proportion of the ingredients (cement, laterite and water), but not the quantities of the materials. 

The maximum compressive strength obtainable with the compressive strength model is 2.896896 N/sq mm. See 

the computer run outs which show all the possible lateritic concrete mix options for the desired  modulus 

property, and the choice of any of the mixes is the user’s. 

One can also draw the conclusion that the maximum values achievable, within the limits of experimental errors, 

is quite below that obtainable using sand as aggregate. This is due to the predominantly high silt content of 

laterite. 
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It can be observed that the task of selecting a particular mix proportion out of many options is not easy, if 

workability and other demands of the resulting lateritic concrete have to be satisfied. This is an important area 

for further research work. 

 

The project work is a great advancement in the search for the applicability of laterite in concrete mortar 

production in regions where sand is extremely scarce with the ubiquity of laterite.  

 

6.2 Recommendations 

From the foregoing study, the following could be recommended: 

i) The model can be used for the optimization of the strength of concrete made from cement, laterite and water.  

ii) Laterite aggregates cannot adequately substitute sharp sand aggregates for heavy  construction. 

iii) More research work need to be done in order to match the computer recommended mixes with the 

workability of the resulting concrete.  

iii) The accuracy of the model can be improved by taking higher order polynomials of the simplex. 

 

'QBASIC BASIC PROGRAM THAT OPTIMIZES THE PROPORTIONS OF LATERITIC CONCRETE 

MIXES 

'USING THE SCHEFFE'S MODEL FOR CONCRETE COMPRESSIVE STRENGTH 

 Cls 

C1$ = "(ONUAMAH.HP) RESULT OUTPUT ": C2$ = "A COMPUTER PROGRAM " 

C3$ = "ON THE OPTIMIZATION OF THE COMPRESSIVE STRENGTH OF A 3-COMPONENT 

LATERITIC CONCRETE MIX" 

Print C2$ + C1$ + C3$ 

Print 

'VARIABLES USED ARE 

'X1, X2, X3, Z1, Z2, Z3, YT, YTMAX, DS 

'INITIALISE I AND YTMAX 

I = 0: YTMAX = 0 

For MX1 = 0 To 1 Step 0.01 

For MX2 = 0 To 1 - MX1 Step 0.01 

MX3 = 1 - MX1 - MX2 

YTM = 2.70 * MX1 +2.525 * MX2 +2.295 * MX3 +1.11 * MX1 * MX2 +1.25 * MX1 * MX3 – 0.64 * MX2 * 

MX3 

If YTM >= YTMAX Then YTMAX = YTM 

Next MX2 

Next MX1 

INPUT "ENTER DESIRED  MODULUS, DS = "; DS 

'PRINT OUTPUT HEADING 

Print 

Print Tab(1); "No"; Tab(10); "X1"; Tab(18); "X2"; Tab(26); "X3"; Tab(32); "YTHEORY"; Tab(45); "Z1"; 

Tab(53); "Z2"; Tab(61); "Z3" 

Print 

'COMPUTE THEORETICAL  MODULUS, YT 

For MX1 = 0 To 1 Step 0.01 

For MX2 = 0 To 1 - X1 Step 0.01 

MX3 = 1 - X1 - X2 

YT =  2.70 * MX1 +2.525 * MX2 +2.295 * MX3 +1.11 * MX1 * MX2 +1.25 * MX1 * MX3 – 0.64 * MX2 * 

MX3 

If Abs(YT - DS) <=0.001 Then 

'PRINT MIX PROPORTION RESULTS 

Z1 = X1 + X2 + X3: Z2 = 7.5 * X1 + 8.2 * X2 + 6.9 * X3: Z3 = 0.05 * X1 + 0.03 * X2 + 0.1 * X3 

I = I + 1 

Print Tab(1); I; USING; "##.###"; Tab(7); X1; Tab(15); X2; Tab(23); X3; Tab(32); YT; Tab(42); Z1; Tab(50); 

Z2; Tab(58); Z3 

Print 

Print 

If (X1 = 1) Then GoTo 550 

Else 

If (X1 < 1) Then GoTo 150 
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End If 

150     Next X2 

Next X1 

If I > 0 Then GoTo 550 

Print 

Print "SORRY, THE DESIRED COMPRESSIVE STRENGTH IS OUT OF RANGE OF MODEL" 

GoTo 600 

550 Print Tab(5); "THE MAXIMUM VALUE PREDICTABLE BY THE MODEL IS "; YTMAX; "N / Sq mm; 

" 

600 End    

A COMPUTER PROGRAM (ONUAMAH.HP) RESULT OUTPUT ON THE OPTIMIZATION OF THE 

COMPRESSIVE STRENGTH OF A 3-COMPONENT LATERITIC CONCRETE MIX 

ENTER DESIRED COMPRESSIVE STRENGTH, DS = ?2.2 

No       X1      X2      X3    YTHEORY      Z1      Z2      Z3 

SORRY, THE DESIRED COMPRESSIVE STRENGTH IS OUT OF RANGE OF MODEL 

Press any key to continue      

ENTER DESIRED COMPRESSIVE STRENGTH, DS = ? 2.26 

No       X1      X2      X3    YTHEORY       Z1        Z2        Z3 

 1     0.000   1.000   0.900   2.260          1.000   7.030   0.093 

 2     0.000   0.540  0.460   2.260           1.000   7.140   0.087 

 3     0.010   0.180   0.810  2.259           1.000   7.140   0.087 

 4     0.100   0.460   0.530  2.261           1.000   7.504   0.067 

 

THE MAXIMUM VALUE PREDICTABLE BY THE MODEL IS  2.896896 N / Sq mm; 

Press any key to continue 

A COMPUTER PROGRAM (ONUAMAH.HP) RESULT OUTPUT ON THE OPTIMIZATION OF THE 

COMPRESSIVE STRENGTH  OF A 3-COMPONENT LATERITIC CONCRETE MIX 

 

ENTER DESIRED  COMPRESSIVE STRENGTH, DS = ? 2.9 

No       X1      X2      X3    YTHEORY      Z1      Z2      Z3 

SORRY, THE DESIRED COMPRESSIVE STRENGTH IS OUT OF RANGE OF MODEL 

Press any key to continue 
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